Singular perturbations of differential equations in abstract spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Perturbations of Abstract Wave Equations

Given, on the Hilbert space H0, the self-adjoint operator B and the skew-adjoint operators C1 and C2, we consider, on the Hilbert space H ≃ D(B)⊕H0, the skew-adjoint operator

متن کامل

Singular perturbations of integro-differential equations

We study the singular perturbation problem (E2) 2 2u′′ 2 (t) + u ′ 2(t) = Au2(t) + (K ∗Au2)(t) + f2(t), t ≥ 0, 2 > 0, for the integrodifferential equation (E) w′(t) = Aw(t) + (K ∗Aw)(t) + f(t), t ≥ 0, in a Banach space, when 2 → 0. Under the assumption that A is the generator of a strongly continuous cosine family and under some regularity conditions on the scalar-valued kernel K we show that p...

متن کامل

Strong solutions for differential equations in abstract spaces

Let (E,F) be a locally convex space. We denote the bounded elements of E by Eb : ={x ∈ E : ‖x‖F = sup ∈F (x)<∞}. In this paper, we prove that if BEb is relatively compact with respect to the F topology and f : I × Eb → Eb is a measurable family of F-continuous maps then for each x0 ∈ Eb there exists a norm-differentiable, (i.e. differentiable with respect to the ‖ · ‖F norm) local solution to t...

متن کامل

Singular Regularization of Operator Equations in L1 Spaces via Fractional Differential Equations

An abstract causal operator equation y = Ay defined on a space of the form L1([0, τ ], X), with X a Banach space, is regularized by the fractional differential equation ε(D 0 yε)(t) = −yε(t) + (Ayε)(t), t ∈ [0, τ ], where Dα 0 denotes the (left) Riemann-Liouville derivative of order α ∈ (0, 1). The main procedure lies on properties of the Mittag-Leffler function combined with some facts from co...

متن کامل

Singular perturbations to semilinear stochastic heat equations

We consider a class of singular perturbations to the stochastic heat equation or semilinear variations thereof. The interesting feature of these perturbations is that, as the small parameter ε tends to zero, their solutions converge to the ‘wrong’ limit, i.e. they do not converge to the solution obtained by simply setting ε = 0. A similar effect is also observed for some (formally) small stocha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1971

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1971.36.775